Welcome to the 35th IEEE Sarnoff Symposium - 2012

Since 1978 the IEEE Sarnoff Symposium has been bringing together a tremendous and rich diversity of telecom experts from industry, universities, and government. The popularity of the Sarnoff Symposium, being held at New Jersey Insitute of Technology (NJIT) in Newark, New Jersey, continues to grow as the premier forum for researchers, engineers, and business executives in the North East drawing an attendance from all over the world. Besides the technical paper presentations, the symposium will include:

- Keynote Presentations
- Banquet
- Tutorials
- Executive Panels
- Student Poster Presentations.

Announcements

- 05/23/2012: Thank you all for attending the 35th Sarnoff Symposium, 2012
- 05/23/2012: List of attended posters is posted on "Student Posters" page
- 05/19/2012: The detailed conference program (updated) is posted on "Conference Program" page
- 05/18/2012: Joel S. Bloom (President, NJIT) will open the 35th Sarnoff Symposium on May 21, 2012
- 05/17/2012: Free parking at the "Parking Deck" for attendees on May 21-22, 2012
- 04/20/2012: Driving direction to NJIT is posted on "Conference Venue" page
- 04/15/2012: List of accepted posters is available on "Student Posters" page
- 04/10/2012: Final version instruction for full paper and student poster are available
- 03/31/2012: Visa letter is available through each attendee’s EDAS account under "My papers" link
- 03/22/2012: Final version of all accepted papers and student posters are due on Apr 15, 2012
- 03/20/2012: Student poster deadline is extended to Apr 06, 2012
- 03/15/2012: Notification of paper acceptance is on Mar 22, 2012 (revised)
- 03/09/2012: Free one-day registration for student poster presenters!!
- 02/17/2012: Student poster deadline is extended to Mar 20, 2012
- 02/03/2012: Paper, panel, and tutorial proposal deadline is further extended to Feb 15, 2012
- 01/27/2012: Discounts on registration fee for students presenting only posters are available
- 01/19/2012: Paper, panel, and tutorial proposal deadline is extended to Feb 03, 2012
- 10/26/2011: Paper registration is open
- 10/25/2011: Website is online
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Feedback Information and Energy Efficiency of MIMO Transmission Modes in LTE</td>
<td>Olayinka Adigun (Kingston University, UK) and Christos Politis (Kingston University, UK)</td>
</tr>
<tr>
<td>2.</td>
<td>Robust Dynamic Remote Data Checking for Public Clouds</td>
<td>Bo Chen (NJIT, USA) and Reza Curtmola (NJIT, USA)</td>
</tr>
<tr>
<td>3.</td>
<td>Multi-device Optimization for Scalable Linear HEMT Model</td>
<td>Sagar Karalkar (UMass-Lowell, USA), Kanti Prasad (UMass-Lowell, USA), Yu Zhu (Skyworks Solutions, USA), Cezun Wei (Skyworks Solutions, USA), Jerod Mason (Skyworks Solutions, USA), and Dylan Bartle (Skyworks Solutions, USA)</td>
</tr>
<tr>
<td>4.</td>
<td>Energy-Efficiency Aware Strategy Design for Content Centric Networking</td>
<td>Yuan Tian (Tsinghua University, China), Zhen Chen (Tsinghua University, China), and Jiwei Huang (Tsinghua University, China)</td>
</tr>
<tr>
<td>5.</td>
<td>Nonlinear Schemes for Spectrum Sensing in Cooperative Cognitive Radio Networks</td>
<td>Taehun An (KAIST, Korea), Dongjin Kim (KAIST, Korea), Hwang-Ki Min (KAIST, Korea), Seungwon Lee (KAIST, Korea), Ilkoo Song (KAIST, Korea), and Seokho Yoon (KAIST, Korea)</td>
</tr>
<tr>
<td>6.</td>
<td>LoongSIn Influence Analysis for Chinese Weibo User</td>
<td>Jun Li (Tsinghua University, China), Zhen Chen (Tsinghua University, China), Zhu-Wei Chen (Tsinghua University, China), Fuyue Han (Tsinghua University, China), Yong Liang (Tsinghua University, China), Ji-Wei Huang (Tsinghua University, China), and Feng Xie (Tsinghua University, China)</td>
</tr>
<tr>
<td>7.</td>
<td>ALT: Airline Luggage Tracking Protocols</td>
<td>Anwar Al-Khateeb (Politecnico Di Torino, Italy)</td>
</tr>
<tr>
<td>8.</td>
<td>WiFi Channel Attack Detection and Avoidance</td>
<td>Joseph Soryal (CUNY-City College, USA) and Tarek Saadawi (CUNY-City College, USA)</td>
</tr>
<tr>
<td>9.</td>
<td>Third Eye: WiFi Voice and Head Gesture Controlled Devices</td>
<td>Robert Pinkerton (NYIT, USA), Wenjie Zhuang (NYIT, USA), Ziqian Dong (NYIT, USA), and Abdolhosse Kashi (NYIT, USA)</td>
</tr>
<tr>
<td>10.</td>
<td>An Online Tweets/Microblogs Collection and Analysis Tool</td>
<td>Hao Liu (Columbia University, USA), Hua Fang (UC-Riverside, USA), Kai Chen (NYU-Poly, USA), Hong Chen (NYU-Poly, USA), and Ziqian Dong (NYIT, USA)</td>
</tr>
<tr>
<td>11.</td>
<td>Design of Free-Space Optical Transmitter and Receiver Modules for Helmet Mounted Broadband fNIR System</td>
<td>Li Hao Jian (Drexel University, USA), Brandon Lally (Drexel University, USA), Peter Tran (Drexel University, USA), Khushali Manseta (Drexel University, USA), Ebraheem Sultan (Drexel University, USA), and Afshin S. Daryoush (Drexel University, USA)</td>
</tr>
<tr>
<td>12.</td>
<td>Experimental Performance Evaluation of a Virtual Software Router</td>
<td>Khondaker M. Salehin (NJIT, USA), Kornlan Egho (NJIT, USA), and Roberto Rojas-Cessa (NJIT, USA)</td>
</tr>
<tr>
<td>13.</td>
<td>Energy Harvesting Two-hop Networks: Optimal Policies for the Multi-Energy Arrival Case</td>
<td>Oner Orhan (NYU-Poly, USA) and Elza Erkip (NYU-Poly, USA)</td>
</tr>
<tr>
<td>14.</td>
<td>Heegard-Berger and Cascade Source Coding Problems with Common Reconstruction Constraints</td>
<td>Behzad Ahmad (NJIT, USA), Ravi Tandon (Princeton University, USA), Osvaldo Simeone (NJIT, USA), and H. Vincent Poor (Princeton University, USA)</td>
</tr>
<tr>
<td>15.</td>
<td>Improving Geographical AODV Protocol by Dynamically Adjusting the Request Zone</td>
<td>Remo Cocco (Rowan University, USA), Vasil Hnatyshin (Rowan University, USA), Malik Ahmed (Rowan University, USA), and Dan Urbanio (Rowan University, USA)</td>
</tr>
<tr>
<td>16.</td>
<td>A Framework for Multidimensional Measurements on an Experimental WiMAX Testbed</td>
<td>Fraida Fund (NYU-Poly, USA), Chen Dong (NYU-Poly, USA), and Thanasis Korakis (NYU-Poly, USA)</td>
</tr>
<tr>
<td>17.</td>
<td>Developing Multi-Channel Mobile Solutions Adapted to Users Globally: The Case of a Smarter Energy Solution</td>
<td>Mani Shergill (Pace University, USA) and Christelle Scharff (Pace University, USA)</td>
</tr>
</tbody>
</table>
Nonlinear Schemes for Spectrum Sensing in Cooperative Cognitive Radio Networks

Taehun An¹, Dongjin Kim², Hwang-Ki Min¹, Seungwon Lee¹, Iickho Song¹, and Seokho Yoon³

¹Korea Advanced Institute of Science and Technology
E-mail: {tahn, hkmin, slee}@Sejong.kaist.ac.kr, i.song@ieee.org
²Korea Testing Laboratory
E-mail: alliongs@gmail.com
³Sungkyunkwan University
E-mail: syoon@skku.edu

Abstract—In this paper, we propose and analyze nonlinear schemes for the spectrum sensing in cooperative cognitive radio networks under impulsive noise circumstances. By jointly employing the order statistics, generalized likelihood ratio test, and counting rule, the proposed scheme exhibits a better performance than the conventional counterparts.

I. INTRODUCTION

The concept of cooperative (or collaborative) spectrum sensing (CSS) has been introduced to overcome the effects of fading and shadowing without incurring excessive processing time for detection [1]. In most studies on the CSS schemes, it is assumed that the noise distribution is Gaussian: Although the assumption is usually reasonable from the central limit theorem, communication systems could frequently be exposed to impulsive noise environments [2].

In this paper, when the noise environment could be impulsive and might differ from a cognitive radio (CR) to another, we consider CSS schemes for the cooperative CR network (CCRN) comprised of one fusion center (FC) and a multiple of CRs. Based on the observation that nonlinear schemes have successfully been applied to mitigate the effects of impulsive noise in many signal processing applications [3], we propose to use nonlinear schemes for the spectrum sensing in the CCRN.

II. SYSTEM MODEL

Consider a CCRN composed of one FC and a number M of CRs. For m = 1, 2, · · · , M and n = 1, 2, · · · , N, the low-pass discrete-time observation ym(n) = ym,t(n) + jym,q(n) of the m-th CR at time instant n can be expressed as

ym(n) = wm(n)

when the frequency band is not being used by the primary user (PU), and as

ym(n) = hm,n s(n) + wm(n)

when the frequency band is being used by the PU.

In (1) and (2), s(n) = s1(n) + js2(n) denotes the transmitted complex signal of the PU at time instant n, and the complex additive noise wm,n(n) = wm,t,n(n) + jwm,q,n(n) is independent over m and n. The transmitted signal s(n) is distorted by the complex channel fading gain hm,n.

III. PROPOSED SPECTRUM SENSING SCHEMES

A. Generalized likelihood ratio test

Since the signal information of the PU is usually unavailable at the CR in practice, the generalized likelihood ratio test (GLRT) can instead be employed, in which the maximum likelihood estimate (MLE) of the distorted transmitted signal hm,n s(n) is adopted at the m-th CR.

B. Nonlinear schemes with selection

Selecting some observations with smaller magnitudes via a nonlinear scheme based on order statistics would generally lead to a better performance than exploiting all of the observations in impulsive noise circumstances.

We first produce the order statistics [4] \(\{y_{m(1)}, y_{m(2)}, \ldots, y_{m(N)}\} \) of \(y_m \), where \(|y_{m(1)}| \leq |y_{m(2)}| \leq \cdots \leq |y_{m(N)}| \).

Then, \(J_m \) smallest observations are selected to produce the test statistic \(T_{GSO}(y_m, J_m) = \sum_{l=1}^{J_m} \ln \left(\frac{f_m(y_{m(l)})}{f_m(y_{m(l)_1})} \right) \) (3) of the detector for the m-th CR, where \(J_m \) is the number of observations selected in the m-th CR, ln(·) and \(f_m \) denote the natural logarithm and MLE, respectively, and \(f_m \) is the joint pdf of \(w_{m,1}(n) \) and \(w_{m,Q}(n) \) for \(n = 1, 2, \ldots, N \). The detector described by the test statistic (3) will be called the GLRT based on selected observations (GSO) detector.

With the GSO detector, the binary spectrum sensing information (SSI) \(x_m \) of the m-th CR is obtained and sent to the FC, where \(x_m = 0 \) and 1 denote the local decision on the vacancy and occupancy of the spectrum, respectively.

C. Fusion center

After the set \(x = [x_1, x_2, \ldots, x_M] \) of all the SSI from the \(M \) CRs is collected at the FC, the SSI is combined to produce the test statistic of the FC. In this paper, we consider three types of counting rules to combine the SSI.
TABLE I

<table>
<thead>
<tr>
<th>Noise environment</th>
<th>1st CR</th>
<th>2nd CR</th>
<th>3rd CR</th>
<th>4th CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(less impulsive) NE 1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(more impulsive) NE 2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

IV. Simulation Results

In this section, in terms of receiver operation characteristic (ROC), we investigate the performance characteristics of the CSS scheme incorporating GSO detectors under various noise circumstances. We assume that the CRs can be exposed to the bivariate isotropic symmetric α-stable (BISOα) noise with $\alpha = 2$ or 1.

A. Influence of the number J_m on the performance

Assuming $M = 1$ and $J_m = J$, the notations $GSO_{\alpha}(J)$ and $GSO_{\alpha}(J)$ will be used to denote the GSO detectors obtained in Cauchy and Gaussian noise circumstances, respectively. As it is easily anticipated, GSO detectors with larger values of J perform better than those with smaller values of J in Gaussian noise circumstance. In addition, it is observed that the GSO detectors with $J = 0.2N$ outperform those with other values of J in BISOαS noise with $\alpha = 1$.

Let G_C stand for the detectors $GSO_C(N)$ and $GSO_C(0.2N)$ when the noise circumstance is BISOαS with $\alpha = 2$ and 1, respectively; similarly, let G_G represent the detectors $GSO_G(N)$ and $GSO_G(0.2N)$ when the noise circumstance is BISOαS with $\alpha = 2$ and 1, respectively.

B. Performances comparison of CSS schemes

For the comparisons of the performance characteristics of several CSS schemes, we consider two cases of noise environment (NE) as shown in Table I.

Figs. 1 and 2 show the performance characteristics of the CSS schemes based on the detectors G_C, G_G, $GSO_C(N)$, and $GSO_G(N)$ in NE 1 and 2, where P_F and P_M denote the false-alarm and missing rates, respectively, of a CSS scheme. It is clearly observed that, in impulsive noise environments, the CSS schemes with G_C and G_G significantly outperform those with $GSO_C(N)$ and $GSO_G(N)$ when the same counting rule is employed: This observation confirms that the detectors G_C and G_G can successfully mitigate the degradation in detection performance caused by impulsive noise.

V. Concluding Remark

We have addressed spectrum sensing in cooperative cognitive radio networks under impulsive noise circumstances. The nonlinear scheme of cooperative spectrum sensing proposed in this paper adopts a selection of the order statistics of observations. From the results of numerical simulations, it is confirmed that the proposed scheme for cooperative spectrum sensing outperforms the conventional schemes in impulsive noise environment with Rayleigh fading.

ACKNOWLEDGMENT

This research was supported by the National Research Foundation of Korea, with funding from the Ministry of Education, Science, and Technology, under Grant 2011-0016462, for which the authors would like to express their thanks.

REFERENCES